

QFIE’s documentation

How to obtain the code

Open Source

The QFIE package is open source and available at https://github.com/Quasar-UniNA/QFIE

Installation

The package can be installed manually:

git clone https://github.com/Quasar-UniNA/QFIE.git QFIE
cd QFIE
pip install .

or if you are planning to extend or develop code replace last command with:

pip install -e .

Motivation

	QFIE Python package gives the opportunity of easily implementing quantum fuzzy inference engines as those proposed in: 10.1109/TFUZZ.2022.3202348

	
	QFIE docs is equipped with two notebook jupyter examples:
	
	QFIE for controlling a Fan Speed System

	QFIE for Lighting Control.

	
	The main changes of QFIE v.1.1.0 can be seen in the notebook jupyter:
	
	QFIE_v_1_1_0.ipynb

How to cite QFIE?

When using this software in your research, please cite the following publication:

Bibtex:

@ARTICLE{9869303,
author={Acampora, Giovanni and Schiattarella, Roberto and Vitiello, Autilia},
journal={IEEE Transactions on Fuzzy Systems},
title={On the Implementation of Fuzzy Inference Engines on Quantum Computers},
year={2022},
volume={},
number={},
pages={1-15},
doi={10.1109/TFUZZ.2022.3202348}}

	Index

	Module Index

	Search Page

API Documentation

	QFIE package
	QFIE.FuzzyEngines module

	QFIE.QFS module

	QFIE.fuzzy_partitions module

	Module contents

QFIE package

QFIE.FuzzyEngines module

This module implements the base class for setting up the quantum fuzzy inference engine proposed in doi: 10.1109/TFUZZ.2022.3202348.

	
class QFIE.FuzzyEngines.QuantumFuzzyEngine(verbose=True)

	Bases: object

Class implementing the Quantum Fuzzy Inference Engine proposed in:

G. Acampora, R. Schiattarella and A. Vitiello, “On the Implementation of Fuzzy Inference Engines on Quantum Computers,”
in IEEE Transactions on Fuzzy Systems, 2022, doi: 10.1109/TFUZZ.2022.3202348.

	
add_input_fuzzysets(var_name, set_names, sets)

	Set the partition for the input fuzzy variable ‘var_name’.

	Parameters:

	
	var_name (str) – name of the fuzzy variable defined with input_variable method previously.

	set_names (list) – list of fuzzy sets’ name as str.

	sets (list) – list of scikit-fuzzy membership function objects.

	Returns:

	None

	
add_output_fuzzysets(var_name, set_names, sets)

	Set the partition for the output fuzzy variable ‘var_name’.

	Parameters:

	
	var_name (str) – name of the fuzzy variable defined with output_variable method previously.

	set_names (list) – list of fuzzy sets’ name as str.

	sets (list) – list of scikit-fuzzy membership function objects.

	Returns:

	None

	
build_inference_qc(input_values, distributed=False, draw_qc=False, **kwargs)

	This function builds the quantum circuit implementing the QFIE, initializing the input quantum registers
according to the ‘input_value’ argument.

	Parameters:

	
	input_values (dict) – dictionary containing the crisp input values of the system.
E.g. {‘var_name_1’ (str): x_1 (float), , ‘var_name_n’ (str): x_n (float)}

	default (draw_qc (Bool -) – False): True for drawing the quantum circuit built. False otherwise.

	distributed – True to implement the distributed version of the quantum oracle. False otherwise.

	Returns:

	None

	
counts_evaluator(n_qubits, counts)

	Function returning the alpha values for alpha-cutting the output fuzzy sets according to the
probability of measuring the related basis states on the output quantum register.

	Parameters:

	
	n_qubits (int) – number of qubits in the output quantum register.

	counts (dict) – counting dictionary of the output quantum register measurement.

	Returns:

	alpha values for alpha-cutting the output fuzzy sets as ‘dict’.

	
execute(n_shots: int, plot_histo=False, GPU=False, **kwargs)

	Run the inference engine.

	Parameters:

	
	n_shots (int) – Number of shots.

	plot_histo (Bool- default False) – True for plotting the counts histogram.

	GPU – True for using GPU for simulation. Use False if backend is a real device.

	Returns:

	Crisp output of the system.

	
filter_rules(rules, output_term)

	Searches the rule list and picks only the rules corresponding to the same output value (y_k at fixed k).

Rules must be formatted as follows: ‘if var_1 is x_i and var_2 is x_k and and var_n is x_l then out_1 is y_k’

	Parameters:

	
	rules (list) – list of rules as strings.

	output_term (str) – single output term y_k at fixed k as string.

	Returns:

	Filtered rules as a new list.

	
input_variable(name, range)

	Define the input variable “name” of the system.

	Parameters:

	
	name (str) – Name of the variable as string.

	range (np array) – Universe of the discourse for the input variable.

	Returns:

	None

	
output_variable(name, range)

	Define the output variable “name” of the system.

	Parameters:

	
	name (str) – Name of the variable as string.

	range (np array) – Universe of the discourse for the output variable.

	Returns:

	None

	
set_rules(rules)

	Set the rule-base of the system.

Rules must be formatted as follows: ‘if var_1 is x_i and var_2 is x_k and and var_n is x_l then out_1 is y_k’

	Parameters:

	rules (list) – list of rules as strings.

	Returns:

	None

	
truncate(n, decimals=0)

	

QFIE.QFS module

	
QFIE.QFS.compute_qc(backend, qc, qc_label, n_shots, verbose=True, transpilation_info=False)

	

	
QFIE.QFS.convert_rule(qc, fuzzy_rule, partitions, output_partition)

	Function which convert a fuzzy rule in the equivalent quantum circuit.
You can use multiple times convert_rule to concatenate the quantum circuits related to different
rules.

	
QFIE.QFS.generate_circuit(fuzzy_partitions)

	Function generating a quantum circuit with width required by QFS

	
QFIE.QFS.merge_subcounts(subcounts, output_partition)

	

	
QFIE.QFS.negation_0(qc, qr, bit_string)

	Function which insert a NOT gate if the bit in the rule is 0

	
QFIE.QFS.output_register(qc, output_partition)

	

	
QFIE.QFS.output_single_qubit_register(qc, name)

	

	
QFIE.QFS.select_qreg_by_name(qc, name)

	Function returning the quantum register in QC selected by name

QFIE.fuzzy_partitions module

	
class QFIE.fuzzy_partitions.fuzzy_partition(name, sets)

	Bases: object

	
associate_quantum_states()

	

	
len_partition()

	

	
class QFIE.fuzzy_partitions.fuzzy_rules

	Bases: object

	
add_rules(rule, partitions)

	NB: specify in partitions the list of partitions which appears in the rule, in the order
in which they appear

Module contents

QFIE For Fan Speed Control

This notebook aims to illustrate how QFIE can control efficiently the speed of a Fan according to the input variables ‘Core Temperature’ and ‘Clock Speed’. Finally, the control surface of the system will be obtained both using QFIE and the canonical Mamdani fuzzy system, which configuration is reported in the paper.

Firstly, let us import the required libraries.

[1]:

import numpy as np
import skfuzzy as fuzz
import matplotlib.pyplot as plt
import QFIE.FuzzyEngines as FE

The system is a MISO composed of two input variables and one output variable. For each of them three fuzzy sets are considered.

	For core temperature the fuzzy sets used are releted to the linguistic terms: ‘cold’, ‘warm’ and ‘hot’.

	For clock speed the fuzzy sets are related to the linguistic terms: ‘low’, ‘normal’ and ‘turbo’

	For the output variable, named ‘Fan Speed’ two fuzzy sets are used related to the linguistic terms: ‘slow’ and ‘fast

By running the following cell, the fuzzy sets used are graphically shown.

[2]:

core_temperature = np.linspace(0, 100, 200)
clock_speed = np.linspace(0, 4, 200)
fan_speed = np.linspace(0, 6000, 200)

t_cold = fuzz.trimf(core_temperature, [0,0,50])
t_warm = fuzz.trimf(core_temperature, [30,50,70])
t_hot = fuzz.trimf(core_temperature, [50, 100, 100])

cs_low = fuzz.trimf(clock_speed, [0,0,1.5])
cs_normal = fuzz.trimf(clock_speed, [0.5,2,3.5])
cs_turbo = fuzz.trimf(clock_speed, [2.5,4,4])

fs_slow = fuzz.trimf(fan_speed, [0, 0, 3500])
fs_fast = fuzz.trimf(fan_speed, [2500, 6000, 6000])

Visualize these universes and membership functions
fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(8, 12))

ax0.plot(core_temperature, t_cold, 'b', linewidth=1.5, label='cold')
ax0.plot(core_temperature, t_warm, 'g', linewidth=1.5, label='warm')
ax0.plot(core_temperature, t_hot, 'r', linewidth=1.5, label='hot')
ax0.set_title('Core Temperature')
ax0.legend()

ax1.plot(clock_speed, cs_low, 'b', linewidth=1.5, label='low')
ax1.plot(clock_speed, cs_normal, 'g', linewidth=1.5, label='normal')
ax1.plot(clock_speed, cs_turbo, 'r', linewidth=1.5, label='turbo')
ax1.set_title('Clock Speed')
ax1.legend()

ax2.plot(fan_speed, fs_slow, 'b', linewidth=1.5, label='slow')
ax2.plot(fan_speed, fs_fast, 'g', linewidth=1.5, label='fast')
ax2.set_title('Fan Speed')
ax2.legend()

Turn off top/right axes
for ax in (ax0, ax1, ax2):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()

plt.show()

[image: _images/Fan_Speed_Control_3_0.png]

The rules base of the system is composed of the following rules:

	if temp is cold and clock is low then fan is slow

	if temp is cold and clock is normal then fan is slow’

	if temp is cold and clock is turbo then fan is fast’

	if temp is warm and clock is low then fan is slow’

	if temp is warm and clock is normal then fan is slow’

	if temp is warm and clock is turbo then fan is fast’

	if temp is hot and clock is low then fan is fast’

	if temp is hot and clock is normal then fan is fast’

	if temp is hot and clock is turbo then fan is fast’

By running the following two cells QFIE is properly initialized

[3]:

rules = ['if temp is cold and clock is low then fan is slow',
 'if temp is cold and clock is normal then fan is slow',
 'if temp is cold and clock is turbo then fan is fast',
 'if temp is warm and clock is low then fan is slow',
 'if temp is warm and clock is normal then fan is slow',
 'if temp is warm and clock is turbo then fan is fast',
 'if temp is hot and clock is low then fan is fast',
 'if temp is hot and clock is normal then fan is fast',
 'if temp is hot and clock is turbo then fan is fast']

[4]:

qfie = FE.QuantumFuzzyEngine(verbose=False)

qfie.input_variable(name='temp', range=core_temperature)
qfie.input_variable(name='clock', range=clock_speed)
qfie.output_variable(name='fan', range=fan_speed)

qfie.add_input_fuzzysets(var_name='temp', set_names=['cold', 'warm', 'hot'], sets=[t_cold, t_warm, t_hot])
qfie.add_input_fuzzysets(var_name='clock', set_names=['low', 'normal', 'turbo'], sets=[cs_low, cs_normal, cs_turbo])
qfie.add_output_fuzzysets(var_name='fan', set_names=['slow', 'fast'],sets=[fs_slow,fs_fast])
qfie.set_rules(rules)

To obtain the control surface of QFIE, it is used to fire the rules in 100 different input combinations. In detail, for 10 values of temperature, 10 different values of clock speed are considered. The 100 outputs obtained are collected in a list which will be used at the end of the notebook to plot the control surface.

[6]:

temp_list, speed_list = [t for t in range(0, 100, 10)], [s/2.5 for s in range(0, 10, 1)]
f_quantum = []
for t in temp_list:
 for s in speed_list:
 qfie.build_inference_qc({'temp':t, 'clock':s}, draw_qc=False)
 f_quantum.append(qfie.execute(1000, plot_histo=False)[0])

Then, the classical Mamdani system is implemented by using the python library Sci-kit Fuzzy. The following cells initializes the system as required from the library.

[7]:

from skfuzzy import control as ctrl

[8]:

temp = ctrl.Antecedent(core_temperature, 'temp')
speed = ctrl.Antecedent(clock_speed , 'speed')
fan = ctrl.Consequent(fan_speed, 'fan')

temp['cold'] = t_cold
temp['warm'] = t_warm
temp['hot'] = t_hot

speed['low'] = cs_low
speed['normal'] = cs_normal
speed['turbo'] = cs_turbo

fan['slow'] = fs_slow
fan['fast'] = fs_fast

rule1 = ctrl.Rule(temp['cold'] & speed['low'], fan['slow'])
rule2 = ctrl.Rule(temp['cold'] & speed['normal'], fan['slow'])
rule3 = ctrl.Rule(temp['cold'] & speed['turbo'], fan['fast'])
rule4 = ctrl.Rule(temp['warm'] & speed['low'], fan['slow'])
rule5 = ctrl.Rule(temp['warm'] & speed['normal'], fan['slow'])
rule6 = ctrl.Rule(temp['warm'] & speed['turbo'], fan['fast'])
rule7 = ctrl.Rule(temp['hot'] & speed['low'], fan['fast'])
rule8 = ctrl.Rule(temp['hot'] & speed['normal'], fan['fast'])
rule9 = ctrl.Rule(temp['hot'] & speed['turbo'], fan['fast'])

fan_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9])
fan_sys = ctrl.ControlSystemSimulation(fan_ctrl)

By running the following cell, the same combinations of inputs are passed to the classical control which computes the 100 output. All the output values are stored in a list.

[9]:

f_classical = []
for t in temp_list:
 for s in speed_list:
 fan_sys.input['temp']=t
 fan_sys.input['speed']=s

 fan_sys.compute()
 f_classical.append(fan_sys.output['fan'])

At this point, both the QFIE and Classical system’ control surfaces can be plotted. Firstly, the following cell shows the former surface.

[10]:

from mpl_toolkits.mplot3d import Axes3D

X, Y, = temp_list, speed_list
plotx,ploty, = np.meshgrid(np.linspace(np.min(X),np.max(X),10), np.linspace(np.min(Y),np.max(Y),10))
Z = np.zeros_like(plotx)
counter = 0
for i in range(len(temp_list)):
 for j in range(len(speed_list)):
 Z[i,j]=f_quantum[counter]
 counter+=1

zfig = plt.figure()
ax = plt.axes(projection='3d')

ax.plot_surface(plotx, ploty, Z, rstride=1, cstride=1, cmap='viridis',
 linewidth=0.4, antialiased=True)
ax.set_xlabel('Temperature')
ax.set_ylabel('Clock')
ax.set_zlabel('Fan Speed')

[10]:

Text(0.5, 0, 'Fan Speed')

[image: _images/Fan_Speed_Control_15_1.png]

Then, the classical surface is displayed by running the following cell.

[11]:

X, Y, = temp_list, speed_list
plotx,ploty, = np.meshgrid(np.linspace(np.min(X),np.max(X),10), np.linspace(np.min(Y),np.max(Y),10))
Z = np.zeros_like(plotx)
counter = 0
for i in range(len(temp_list)):
 for j in range(len(speed_list)):
 Z[i,j]=f_classical[counter]
 counter+=1
zfig = plt.figure()
ax = plt.axes(projection='3d')

ax.plot_surface(plotx, ploty, Z, rstride=1, cstride=1, cmap='viridis',
 linewidth=0.4, antialiased=True)
ax.set_xlabel('Temperature')
ax.set_ylabel('Clock')
ax.set_zlabel('Fan Speed')

[11]:

Text(0.5, 0, 'Fan Speed')

[image: _images/Fan_Speed_Control_17_1.png]

The two surfaces show how QFIE is able to control in a very similar way to a classical Mamdani fuzzy control the Fan Speed system, despite the computational advantage in firing the fuzzy rules in a parallel way.

QFIE For Lighting Controller System

This notebook aims to illustrate how QFIE can control efficiently a lighting system, in which the control system dim the bulb light automatically according to the environmental Light. Two input variables are considered, namely the environment light and the changing rate of the environmental light. Finally, the control surface of the system will be obtained both using QFIE and the canonical Mamdani fuzzy system, which configuration is reported in the paper.

Firstly, let us import the required libraries.

[1]:

import numpy as np
import skfuzzy as fuzz
import matplotlib.pyplot as plt
import QFIE.FuzzyEngines as FE

The system is a MISO composed of two input variables and one output variable. In detail:

Inputs:

	Environment Light (env_light): three linguistic terms are considered: ‘Dark’, ‘Medium’, ‘Light’

	Changing Rate (change_rate): three lingiuistic terms are considered: ‘Negative Small’, ‘Zero’, ‘Positive Small’

Output:

	Dimmer Control (dimmer_ctrl): four linguistic terms are considered: ‘Very Small’, ‘Small’, ‘Big’, ‘Very Big’

By running the following cell, the fuzzy sets used are graphically shown.

[2]:

env_light = np.linspace(120, 220, 200)
changing_rate = np.linspace(-10, 10, 200)
dimmer_control = np.linspace(0, 10, 200)

l_dark = fuzz.trapmf(env_light, [120,120,130,150])
l_medium = fuzz.trapmf(env_light, [130, 150, 190,210])
l_light = fuzz.trapmf(env_light, [190, 210, 220, 220])

r_ns = fuzz.trimf(changing_rate, [-10,-10,0])
r_zero = fuzz.trimf(changing_rate, [-10,0,10])
r_ps = fuzz.trimf(changing_rate, [0,10,10])

dm_vs = fuzz.trapmf(dimmer_control, [0,0,2,4])
dm_s = fuzz.trimf(dimmer_control, [2,4,6])
dm_b = fuzz.trimf(dimmer_control, [4,6,8])
dm_vb = fuzz.trapmf(dimmer_control, [6,8,10,10])

Visualize these universes and membership functions
fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(10, 12))

ax0.plot(env_light, l_dark, 'b', linewidth=1.5, label='dark')
ax0.plot(env_light, l_medium, 'g', linewidth=1.5, label='medium')
ax0.plot(env_light, l_light, 'r', linewidth=1.5, label='light')
ax0.set_title('Environment Light')
ax0.legend()

ax1.plot(changing_rate, r_ns, 'b', linewidth=1.5, label='negative small')
ax1.plot(changing_rate, r_zero, 'g', linewidth=1.5, label='zero')
ax1.plot(changing_rate, r_ps, 'r', linewidth=1.5, label='positive small')
ax1.set_title('Changing Rate')
ax1.legend()

ax2.plot(dimmer_control, dm_vs, 'b', linewidth=1.5, label='very small')
ax2.plot(dimmer_control, dm_s, 'g', linewidth=1.5, label='small')
ax2.plot(dimmer_control, dm_b, 'r', linewidth=1.5, label='big')
ax2.plot(dimmer_control, dm_vb, 'y', linewidth=1.5, label='very big')
ax2.set_title('Dimmer control')
ax2.legend()

Turn off top/right axes
for ax in (ax0, ax1, ax2):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()

plt.show()

[image: _images/Lighting_Control_3_0.png]

The rules base of the system is composed of the following rules:

	if env_light is dark and change_rate is pos_small then dimmer_ctrl is big

	if env_light is dark and change_rate is zero then dimmer_ctrl is big

	if env_light is dark and change_rate is neg_small then dimmer_ctrl is very_big

	if env_light is medium and change_rate is pos_small then dimmer_ctrl is small

	if env_light is medium and change_rate is zero then dimmer_ctrl is big

	if env_light is medium and change_rate is neg_small then dimmer_ctrl is big

	if env_light is light and change_rate is pos_small then dimmer_ctrl is very_small

	if env_light is light and change_rate is zero then dimmer_ctrl is small

	if env_light is light and change_rate is neg_small then dimmer_ctrl is big

By running the following two cells QFIE is properly initialized

[3]:

rules = ['if env_light is dark and change_rate is pos_small then dimmer_ctrl is big',
 'if env_light is dark and change_rate is zero then dimmer_ctrl is big',
 'if env_light is dark and change_rate is neg_small then dimmer_ctrl is very_big',
 'if env_light is medium and change_rate is pos_small then dimmer_ctrl is small',
 'if env_light is medium and change_rate is zero then dimmer_ctrl is big',
 'if env_light is medium and change_rate is neg_small then dimmer_ctrl is big',
 'if env_light is light and change_rate is pos_small then dimmer_ctrl is very_small',
 'if env_light is light and change_rate is zero then dimmer_ctrl is small',
 'if env_light is light and change_rate is neg_small then dimmer_ctrl is big']

[4]:

qfie = FE.QuantumFuzzyEngine(verbose=False)
qfie.input_variable(name='env_light', range=env_light)
qfie.input_variable(name='change_rate', range=changing_rate)
qfie.output_variable(name='dimmer_ctrl', range=dimmer_control)

qfie.add_input_fuzzysets(var_name='env_light', set_names=['dark', 'medium', 'light'], sets=[l_dark, l_medium, l_light])
qfie.add_input_fuzzysets(var_name='change_rate', set_names=['neg_small', 'zero', 'pos_small'], sets=[r_ns, r_zero, r_ps])
qfie.add_output_fuzzysets(var_name='dimmer_ctrl', set_names=['very_small', 'small', 'big', 'very_big'],sets=[dm_vs, dm_s, dm_b, dm_vb])
qfie.set_rules(rules)

To obtain the control surface of QFIE, it is used to fire the rules in 121 different input combinations. In detail, for 11 values of env_light 11 different values of change_rate are considered. The 121 outputs obtained are collected in a list which will be used at the end of the notebook to plot the control surface.

[5]:

el_list, cr_list = [t for t in range(120, 230, 10)], [s for s in range(-10, 12, 2)]
f_quantum = []
for el in el_list:
 for cr in cr_list:
 qfie.build_inference_qc({'env_light':el, 'change_rate':cr}, draw_qc=False)
 f_quantum.append(qfie.execute(n_shots=1000, plot_histo=False)[0])

Then, the classical Mamdani system is implemented by using the python library Sci-kit Fuzzy. The following cells initializes the system as required from the library

[6]:

from skfuzzy import control as ctrl

[7]:

env_l = ctrl.Antecedent(env_light, 'env_light')
cng_r = ctrl.Antecedent(changing_rate , 'change_rate')
dim = ctrl.Consequent(dimmer_control, 'dimmer_ctrl')

env_l['dark'] = l_dark
env_l['medium'] = l_medium
env_l['light'] = l_light

cng_r['neg_small'] = r_ns
cng_r['zero'] = r_zero
cng_r['pos_small'] = r_ps

dim['very_small'] = dm_vs
dim['small'] = dm_s
dim['big'] = dm_b
dim['very_big'] = dm_vb

rule1 = ctrl.Rule(env_l['dark'] & cng_r['pos_small'], dim['big'])
rule2 = ctrl.Rule(env_l['dark'] & cng_r['zero'], dim['big'])
rule3 = ctrl.Rule(env_l['dark'] & cng_r['neg_small'], dim['very_big'])
rule4 = ctrl.Rule(env_l['medium'] & cng_r['pos_small'], dim['small'])
rule5 = ctrl.Rule(env_l['medium'] & cng_r['zero'], dim['big'])
rule6 = ctrl.Rule(env_l['medium'] & cng_r['neg_small'], dim['big'])
rule7 = ctrl.Rule(env_l['light'] & cng_r['pos_small'], dim['very_small'])
rule8 = ctrl.Rule(env_l['light'] & cng_r['zero'], dim['small'])
rule9 = ctrl.Rule(env_l['light'] & cng_r['neg_small'], dim['big'])

dim_ctrl = ctrl.ControlSystem([rule1, rule2, rule3, rule4, rule5, rule6, rule7, rule8, rule9])
dim_sys = ctrl.ControlSystemSimulation(dim_ctrl)

By running the following cell, the same combinations of inputs are passed to the classical control which computes the 121 output. All the output values are stored in a list.

[8]:

f_classical = []
for el in el_list:
 for cr in cr_list:
 dim_sys.input['env_light']=el
 dim_sys.input['change_rate']=cr

 dim_sys.compute()
 f_classical.append(dim_sys.output['dimmer_ctrl'])

At this point, both the QFIE and Classical system’ control surfaces can be plotted. Firstly, the following cell shows the former surface.

[9]:

from mpl_toolkits.mplot3d import Axes3D

X, Y, = el_list, cr_list
plotx,ploty, = np.meshgrid(np.linspace(np.min(X),np.max(X),11), np.linspace(np.min(Y),np.max(Y),11))
Z = np.zeros_like(plotx)
counter = 0
for i in range(len(el_list)):
 for j in range(len(cr_list)):
 Z[i,j]=f_quantum[counter]
 counter+=1

zfig = plt.figure()
ax = plt.axes(projection='3d')

ax.plot_surface(plotx, ploty, Z, rstride=1, cstride=1, cmap='viridis',
 linewidth=0.4, antialiased=True)
ax.set_xlabel('Environment Light')
ax.set_ylabel('Changing Rate')
ax.set_zlabel('Dimmer Control')

[9]:

Text(0.5, 0, 'Dimmer Control')

[image: _images/Lighting_Control_15_1.png]

Then, the classical surface is displayed by running the following cell.

[10]:

X, Y, = el_list, cr_list
plotx,ploty, = np.meshgrid(np.linspace(np.min(X),np.max(X),11), np.linspace(np.min(Y),np.max(Y),11))
Z = np.zeros_like(plotx)
counter = 0
for i in range(len(el_list)):
 for j in range(len(cr_list)):
 Z[i,j]=f_classical[counter]
 counter+=1

zfig = plt.figure()
ax = plt.axes(projection='3d')

ax.plot_surface(plotx, ploty, Z, rstride=1, cstride=1, cmap='viridis',
 linewidth=0.4, antialiased=True)
ax.set_xlabel('Environment Light')
ax.set_ylabel('Changing Rate')
ax.set_zlabel('Dimmer Control')

[10]:

Text(0.5, 0, 'Dimmer Control')

[image: _images/Lighting_Control_17_1.png]

The two surfaces show how QFIE is able to control in a very similar way to a classical Mamdani fuzzy control the lighting control system, despite the computational advantage in firing the fuzzy rules in a parallel way.

QFIE 1.1.0 Release

This notebook aims to illustrate the main changes applied to the QFIE package. As an example the lighting system control introduced in the previous notebook will be considered. Firstly, let us import the required libraries.

[1]:

import numpy as np
import skfuzzy as fuzz
import matplotlib.pyplot as plt
import QFIE.FuzzyEngines as FE

The system is a MISO composed of two input variables and one output variable. In detail:

Inputs:

	Environment Light (env_light): three linguistic terms are considered: ‘Dark’, ‘Medium’, ‘Light’

	Changing Rate (change_rate): three lingiuistic terms are considered: ‘Negative Small’, ‘Zero’, ‘Positive Small’

Output:

	Dimmer Control (dimmer_ctrl): four linguistic terms are considered: ‘Very Small’, ‘Small’, ‘Big’, ‘Very Big’

By running the following cell, the fuzzy sets used are graphically shown.

[2]:

env_light = np.linspace(120, 220, 200)
changing_rate = np.linspace(-10, 10, 200)
dimmer_control = np.linspace(0, 10, 200)

l_dark = fuzz.trapmf(env_light, [120,120,130,150])
l_medium = fuzz.trapmf(env_light, [130, 150, 190,210])
l_light = fuzz.trapmf(env_light, [190, 210, 220, 220])

r_ns = fuzz.trimf(changing_rate, [-10,-10,0])
r_zero = fuzz.trimf(changing_rate, [-10,0,10])
r_ps = fuzz.trimf(changing_rate, [0,10,10])

dm_vs = fuzz.trapmf(dimmer_control, [0,0,2,4])
dm_s = fuzz.trimf(dimmer_control, [2,4,6])
dm_b = fuzz.trimf(dimmer_control, [4,6,8])
dm_vb = fuzz.trapmf(dimmer_control, [6,8,10,10])

Visualize these universes and membership functions
fig, (ax0, ax1, ax2) = plt.subplots(nrows=3, figsize=(10, 12))

ax0.plot(env_light, l_dark, 'b', linewidth=1.5, label='dark')
ax0.plot(env_light, l_medium, 'g', linewidth=1.5, label='medium')
ax0.plot(env_light, l_light, 'r', linewidth=1.5, label='light')
ax0.set_title('Environment Light')
ax0.legend()

ax1.plot(changing_rate, r_ns, 'b', linewidth=1.5, label='negative small')
ax1.plot(changing_rate, r_zero, 'g', linewidth=1.5, label='zero')
ax1.plot(changing_rate, r_ps, 'r', linewidth=1.5, label='positive small')
ax1.set_title('Changing Rate')
ax1.legend()

ax2.plot(dimmer_control, dm_vs, 'b', linewidth=1.5, label='very small')
ax2.plot(dimmer_control, dm_s, 'g', linewidth=1.5, label='small')
ax2.plot(dimmer_control, dm_b, 'r', linewidth=1.5, label='big')
ax2.plot(dimmer_control, dm_vb, 'y', linewidth=1.5, label='very big')
ax2.set_title('Dimmer control')
ax2.legend()

Turn off top/right axes
for ax in (ax0, ax1, ax2):
 ax.spines['top'].set_visible(False)
 ax.spines['right'].set_visible(False)
 ax.get_xaxis().tick_bottom()
 ax.get_yaxis().tick_left()

plt.show()

[image: _images/QFIE_v_1_1_0_3_0.png]

The rules base of the system is composed of the following rules:

	if env_light is dark and change_rate is pos_small then dimmer_ctrl is big

	if env_light is dark and change_rate is zero then dimmer_ctrl is big

	if env_light is dark and change_rate is neg_small then dimmer_ctrl is very_big

	if env_light is medium and change_rate is pos_small then dimmer_ctrl is small

	if env_light is medium and change_rate is zero then dimmer_ctrl is big

	if env_light is medium and change_rate is neg_small then dimmer_ctrl is big

	if env_light is light and change_rate is pos_small then dimmer_ctrl is very_small

	if env_light is light and change_rate is zero then dimmer_ctrl is small

	if env_light is light and change_rate is neg_small then dimmer_ctrl is big

By running the following two cells QFIE is properly initialized

[3]:

rules = ['if env_light is dark and change_rate is pos_small then dimmer_ctrl is big',
 'if env_light is dark and change_rate is zero then dimmer_ctrl is big',
 'if env_light is dark and change_rate is neg_small then dimmer_ctrl is very_big',
 'if env_light is medium and change_rate is pos_small then dimmer_ctrl is small',
 'if env_light is medium and change_rate is zero then dimmer_ctrl is big',
 'if env_light is medium and change_rate is neg_small then dimmer_ctrl is big',
 'if env_light is light and change_rate is pos_small then dimmer_ctrl is very_small',
 'if env_light is light and change_rate is zero then dimmer_ctrl is small',
 'if env_light is light and change_rate is neg_small then dimmer_ctrl is big']

Firstly, let us initialize the QuantumFuzzyEngine class defined in FE. By setting verbose=True we will get information about the inference during the computation. Set verbose=False if this information is unuseful in your application.

[4]:

qfie = FE.QuantumFuzzyEngine(verbose=True)

The way in which input and output variables are passed to QFIE remains unchanged:

[5]:

qfie.input_variable(name='env_light', range=env_light)
qfie.input_variable(name='change_rate', range=changing_rate)
qfie.output_variable(name='dimmer_ctrl', range=dimmer_control)

qfie.add_input_fuzzysets(var_name='env_light', set_names=['dark', 'medium', 'light'], sets=[l_dark, l_medium, l_light])
qfie.add_input_fuzzysets(var_name='change_rate', set_names=['neg_small', 'zero', 'pos_small'], sets=[r_ns, r_zero, r_ps])
qfie.add_output_fuzzysets(var_name='dimmer_ctrl', set_names=['very_small', 'small', 'big', 'very_big'],sets=[dm_vs, dm_s, dm_b, dm_vb])
qfie.set_rules(rules)

The main difference in the new version of QuantumFuzzyEngine is the fact that any backend can be used to compute the quantum circuit. Now the backend is passed as argument of the execute method as Qiskit Backend object, instead that as string.

Let see an example by running an inference process.

[6]:

el, cr = 140, -5
qfie.build_inference_qc({'env_light':el, 'change_rate':cr}, draw_qc=True, filename='qc_plot.png')

{'env_light': 140, 'change_rate': -5}
Input values {'env_light': [0.5, 0.5, 0.0], 'change_rate': [0.5, 0.5, 0.0]}

/Users/rschiattarella/Projects/QFIE_Package/src/QFIE/FuzzyEngines.py:277: UserWarning: Matplotlib is currently using module://matplotlib_inline.backend_inline, which is a non-GUI backend, so cannot show the figure.
 self.qc["full_circuit"].draw("mpl", filename=kwargs["filename"]).show()

By specifying the filename in the build_inference_qc method a png file containing the quantum circuit plot is created. This is particularly useful when the size of the quantum circuit is big and visualization problems during the execution arise. If filename isn’t specified the quantum circuit is shown but not saved.

[image: f7fa230729be4a40b8d06b5dfd7f76db]

At this point the generated QC can be executed with the execute method. If not backend is specified then the qc is running by using the Qiskit local QasmSimulator. Any backend can be specified and used. As an example the following execution is carried out by using the noisy FakeMumbai() simulator.

[7]:

from qiskit.providers.fake_provider import FakeMumbai
qfie.execute(n_shots=1000, backend=FakeMumbai())[0]

Running qc full_circuit on fake_mumbai
Output Counts {'0001': 0.09833333333333333, '0010': 0.176, '0100': 0.32766666666666666, '1000': 0.191}

[7]:

5.613499478403967

Distributed-QFIE (D-QFIE)

Another important change in the new release of QFIE package is the possibility of using the Distributed QFIE algorithm introduced in the paper submitted as proceeding for FUZZ-IEEE 2023’ Distributing Fuzzy Inference Engines on Quantum Computers - Acampora Giovanni, Massa Alfredo, Schiattarella Roberto, Vitiello Autilia’.

Here the inference process is distributed over more quantum circuits, one for each possible consequent of the system.

This part of the notebook is dedicated to see how D-QFIE can be used as part of the QFIE package.

In this particular control system the output variable is composed of four linguistic terms, therefore four quantum circuits will be created. To activate the D-QFIE inference process use the related flag in build_inference_qc method as follows:

[11]:

qfie = FE.QuantumFuzzyEngine(verbose=True)
qfie.input_variable(name='env_light', range=env_light)
qfie.input_variable(name='change_rate', range=changing_rate)
qfie.output_variable(name='dimmer_ctrl', range=dimmer_control)

qfie.add_input_fuzzysets(var_name='env_light', set_names=['dark', 'medium', 'light'], sets=[l_dark, l_medium, l_light])
qfie.add_input_fuzzysets(var_name='change_rate', set_names=['neg_small', 'zero', 'pos_small'], sets=[r_ns, r_zero, r_ps])
qfie.add_output_fuzzysets(var_name='dimmer_ctrl', set_names=['very_small', 'small', 'big', 'very_big'],sets=[dm_vs, dm_s, dm_b, dm_vb])
qfie.set_rules(rules)

qfie.build_inference_qc({'env_light':el, 'change_rate':cr}, distributed=True, draw_qc=True, filename='d_qc.png')

{'env_light': 140, 'change_rate': -5}
Input values {'env_light': [0.5, 0.5, 0.0], 'change_rate': [0.5, 0.5, 0.0]}

By specifying the filename four quantum circuit figures will be saved at the path indicated.

[image: 5939c48d121b490585c6198b8303efb8] [image: 586a2c8f2961448fb716dacdb6bbcc29] [image: 6fef2bb7fce746c9829d2a0a6046b0cf] [image: bcee4f9df04c47a1a4683840bc2ba1d6]

By running the execute method the quantum circuits will be executed and the outputs aggregated in order to obtain the crisp output value. If not backend is specified, then all the quantum circuits will be simulated by means of the noiseless QasmSimulator.

[12]:

qfie.execute(n_shots=1000)[0]

Running qc very_small on qasm_simulator
Running qc small on qasm_simulator
Running qc big on qasm_simulator
Running qc very_big on qasm_simulator
Output Counts {'0001': 0.0, '0010': 0.0, '0100': 0.7519762845849802, '1000': 0.24802371541501977}

[12]:

6.657587913604732

Alternatively, a list of backend can be specified and the quantum circuits will be computed on them.

[13]:

from qiskit.providers.fake_provider import FakeMumbai, FakeMontreal
qfie.execute(n_shots=1000, backend=[FakeMontreal(), FakeMumbai()])[0]

Running qc very_small on fake_montreal
Running qc small on fake_mumbai
Running qc big on fake_montreal
Running qc very_big on fake_mumbai
Output Counts {'0001': 0.09771309771309772, '0010': 0.3277893277893278, '0100': 0.35135135135135137, '1000': 0.22314622314622315}

[13]:

5.468974659317126

The differences in output computation are related to the noise affecting the circuits simulations by using IBM Fake devices.

The usage of D-QFIE is strongly suggested when noisy devices are used to compute QFIE.

 Python Module Index

 q

 		 	

 		
 q	

 	[image: -]
 	
 QFIE	

 	
 	
 QFIE.fuzzy_partitions	

 	
 	
 QFIE.FuzzyEngines	

 	
 	
 QFIE.QFS	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | Q
 | S
 | T

A

 	
 	add_input_fuzzysets() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

 	add_output_fuzzysets() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

 	
 	add_rules() (QFIE.fuzzy_partitions.fuzzy_rules method)

 	associate_quantum_states() (QFIE.fuzzy_partitions.fuzzy_partition method)

B

 	
 	build_inference_qc() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

C

 	
 	compute_qc() (in module QFIE.QFS)

 	
 	convert_rule() (in module QFIE.QFS)

 	counts_evaluator() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

E

 	
 	execute() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

F

 	
 	filter_rules() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

 	
 	fuzzy_partition (class in QFIE.fuzzy_partitions)

 	fuzzy_rules (class in QFIE.fuzzy_partitions)

G

 	
 	generate_circuit() (in module QFIE.QFS)

I

 	
 	input_variable() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

L

 	
 	len_partition() (QFIE.fuzzy_partitions.fuzzy_partition method)

M

 	
 	merge_subcounts() (in module QFIE.QFS)

 	
 module

 	QFIE

 	QFIE.fuzzy_partitions

 	QFIE.FuzzyEngines

 	QFIE.QFS

N

 	
 	negation_0() (in module QFIE.QFS)

O

 	
 	output_register() (in module QFIE.QFS)

 	
 	output_single_qubit_register() (in module QFIE.QFS)

 	output_variable() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

Q

 	
 	
 QFIE

 	module

 	
 QFIE.fuzzy_partitions

 	module

 	
 	
 QFIE.FuzzyEngines

 	module

 	
 QFIE.QFS

 	module

 	QuantumFuzzyEngine (class in QFIE.FuzzyEngines)

S

 	
 	select_qreg_by_name() (in module QFIE.QFS)

 	
 	set_rules() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

T

 	
 	truncate() (QFIE.FuzzyEngines.QuantumFuzzyEngine method)

 _images/Lighting_Control_17_1.png
Dimmer Control

_images/Lighting_Control_3_0.png
10

08

06

04

02

00

10

08

06

04

02

00

10

08

06

04

02

00

Environment Light

—
— medium
— light

20 140 160 150 200 B
Changing Rate

— negative small
— positive small

o s o s 00 25 50 75 100
Dimmer control

very small
small

b

very big

_images/Fan_Speed_Control_3_0.png
10

08

06

04

02

00

10

08

06

04

02

00

10

08

06

04

02

00

Core Temperature

— wu
— ot
0) @ @ @ 150
Clock Speed
— low
— romal
— tbo
g0 o5 1o 15 20 25 30 35 4o
Fan Speed
— sow
— st
0 1000 2000 3000 4000 5000 6000

_images/Lighting_Control_15_1.png
Dimmer Control

_images/qc_plot.png
vo 1 uz

... ﬂ
T T o o S

4

cO

WS 45
< <
> 2

I I
> >
c c
o} o}

env_lighty
env_light,

change_rateg
change_rate;
dimmer ctrly
dimmer ctrl;
dimmer ctrl,
dimmer ctrls
change_rateg
change_rate;
dimmer ctrly
dimmer ctrl;
dimmer ctrl,
dimmer ctrls

cO

_images/small_d_qc.png
env_lighty
env_light,
change_rateg
change_rate;
small

clo

_images/QFIE_v_1_1_0_3_0.png
10

0.8

0.6

0.4

02

0.0

10

0.8

0.6

0.4

02

0.0

10

0.8

0.6

0.4

02

0.0

Environment Light

120 140 160 180 200 220
Changing Rate

— negative small
— zero
—— positive small

-10.0 -75 -5.0 -25 0.0 2.5 5.0 75 10.0
Dimmer control

very small
small

big

very big

_images/big_d_qc.png
big

S i
< <
5 o
V_ V_
c c
U] U]

change_rateg
change_rate;

cll

_images/very_big_d_qc.png
env_lighty
env_light,
change_rateg
change_rate;
very_big

cl2

_images/very_small_d_qc.png
env_lighty
env_light,
change_rateg
change_rate;
very_small

c9

_images/Fan_Speed_Control_15_1.png

_images/Fan_Speed_Control_17_1.png

nav.xhtml

 Table of Contents

 		
 QFIE’s documentation

_static/minus.png

_static/plus.png

_static/file.png

